यदि $f(\theta)=\left|\begin{array}{ccc}1 & \cos \theta & 1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1\end{array}\right|$ है, तथा $A$ तथा $B$ क्रमशः $f(\theta)$ के अधिकतम तथा न्यूनतम मान हैं, तो $( A , B )$ बराबर है
$(3, - 1)$
$( 4,2-\sqrt 2 )$
$(2 + \sqrt 2 ,2 - \sqrt 2 )$
$(2 + \sqrt 2 , - 1)$
सारणिक$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 - x}&1\\1&1&{1 + y}\end{array}\,} \right|$ का मान है
यदि रेखीय समीकरण निकाय
$2 x + y - z =7$
$x -3 y +2 z =1$
$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :
यदि $\omega $ इकाई का घनमूल हो व $\Delta = \left| {\begin{array}{*{20}{c}}1&{2\omega }\\\omega &{{\omega ^2}}\end{array}} \right|$, तो ${\Delta ^2}$ =
यदि $1,\omega ,{\omega ^2}$ इकाई के घनमूल हैं, तब $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\\{{\omega ^{2n}}}&1&{{\omega ^n}}\end{array}\,} \right|$ का मान होगा
दो न्याय पासे फेंके जाते है। उनमें प्राप्त अंको को $\lambda$ तथा $\mu$ लेकर रैखिक समीकरण निकाय $x+y+z=5$ , $x+2 y+3 z=\mu$ , $x+3 y+\lambda z=1$ बनाया जाता है। यदि इस निकाय का अद्वितीय हल होने की प्रायिकता $p$ है तथा इस निकाय का कोई भी हल न होने की प्रायिकता $q$ है, तो -